TC-11[®] Corrosion Inhibitor

Versus

Corrosion Block® and CorrosionX®

July 2006

Corrosion Test Methodology

- 1. Identical Type S Steel Q-Panels are chemically cleaned and treated once with a competing product.
- 2. The Q-Panels are mounted in a vertical position for 24-hours.
- 3. The Q Panels are mounted on a test panel.
- 4. The Q-Panels are exposed to identical environmental exposures full tropical sunlight, intermittent rainfall, a salt breeze, and a nightly condensation cycle.
- 5. The Q Panels are photographed at 24-hour intervals using sunlight as the light source.

Start of Test

Corrosion Block

TC-11

CorrosionX

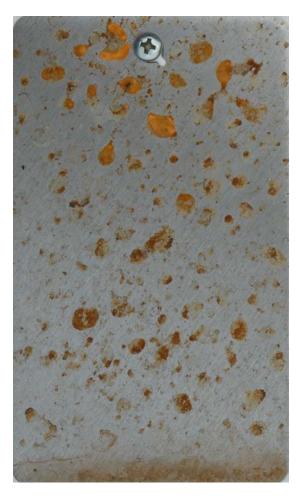
Day One

Corrosion Block

TC-11

CorrosionX

Day Two



Corrosion Block

TC-1

CorrosionX

Day Three

Corrosion Block

TC-11

CorrosionX

Day Four



Corrosion Block

TC-11

CorrosionX

Day Five

Corrosion Block

TC-11

CorrosionX

Day Six

Corrosion Block

TC-11

CorrosionX

Day Seven

Corrosion Block

TC-11

CorrosionX

Day Eight

Corrosion Block

TC-11

CorrosionX

Day Nine

Corrosion Block

TC-11

CorrosionX

Day Ten

TC-11

CorrosionX

Day Eleven

Corrosion Block

TC-11

CorrosionX

Day Twelve

Corrosion Block

TC-11

CorrosionX

Day Thirteen

Corrosion Block

TC-11

CorrosionX

Day Fourteen

Corrosion Block

TC-11

CorrosionX

Day Fifteen

Corrosion Block

TC-11

CorrosionX

Day Sixteen

Corrosion Block

TC-11

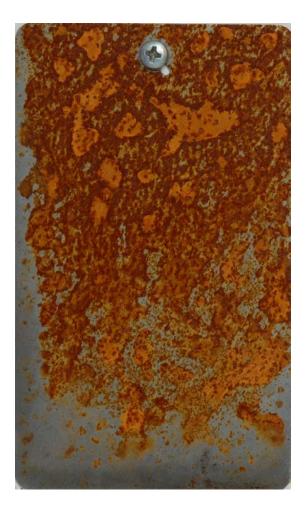
CorrosionX

Day Seventeen

Corrosion Block

TC-11

CorrosionX


Day Eighteen

Corrosion Block

TC-11

CorrosionX

Day Nineteen

Corrosion Block

TC-11

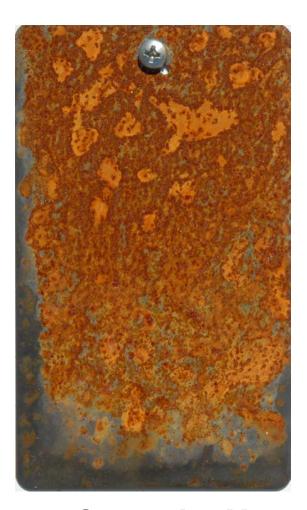
CorrosionX

Day Twenty

Corrosion Block

TC-11

CorrosionX


Day Twenty-One

Corrosion Block

TC-11

CorrosionX

Day Twenty-Two

TC-11

CorrosionX

Day Twenty-Three

Corrosion Block

TC-11

CorrosionX

Day Twenty-Four

Corrosion Block



TC-11

CorrosionX

Day Twenty-Five

Corrosion Block

TC-11

CorrosionX

Day Twenty-Six

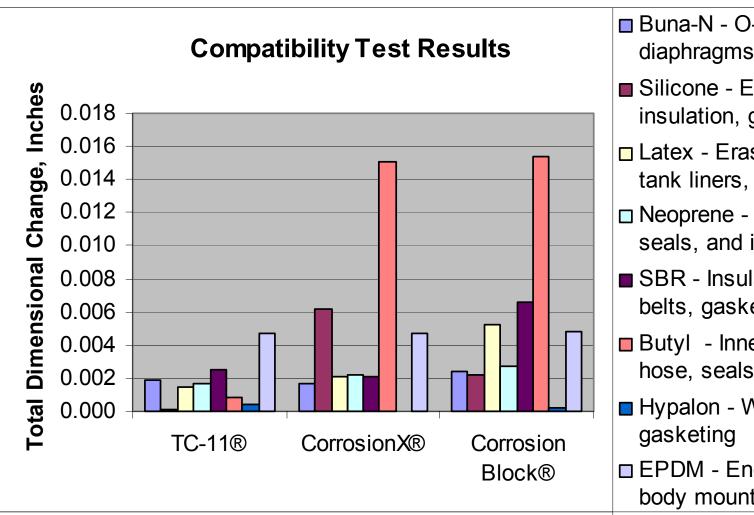
TC-11

CorrosionX

Day Twenty-Seven

Corrosion Block

TC-11


CorrosionX

Corrosion Test Summary

- 1. Corrosion Block failed after two days of exposure to ambient conditions.
- 2. CorrosionX failed after three days of exposure to ambient conditions.
- 3. TC-11 failed after 24 days of exposure to ambient conditions.
- 4. TC-11 offers significantly better corrosion control performance than Corrosion Block or CorrosionX.

Compatibility Testing Methodology

- The test coupons were 1" diameter x $\frac{1}{2}$ " thick pieces of elastomer selected on the basis of sensitivity to solvents.
- The thickness of each coupon was measured with a digital micrometer.
- The coupon was treated once with a product.
- The thickness of the coupon was measured for a two week period with a micrometer.
- The thickness of an untreated coupon was measured for a two week period.
- The difference in the dimensional changes between the treated coupon and the un-treated coupon was calculated.
- The test results were plotted on a graph in the order of performance.

- Buna-N O-rings, diaphragms, seals
- Silicone Electrical insulation, gaskets, seals
- □ Latex Erasers, gaskets, tank liners, seals
- Neoprene Wetsuits, belting, seals, and insulation
- SBR Insulation, conveyor belts, gasketing, washers
- Butyl Inner tubes, garden hose, seals
- Hypalon Wet suits, seals,
- EPDM Engine mounts, body mounts, CV joint boots

Compatibility Test Conclusion

TC-11 is much more compatible with sensitive elastomers than Corrosion Block or CorrosionX.